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A N O T E  O N  E U C L I D E A N  R A M S E Y  T H E O R Y  
A N D  A C O N S T R U C T I O N  OF B O U R G A I N  

N. ALON and Y. PERES (Tel Aviv) 

1. Qualitative facts 

Let v be a fixed unit vector in a Hilbert space f2. Denote 

~ = {coc~l<v,  co) = c, l icoll=l} 

for a real 0 < c <  1. Bessel's inequality implies that any orthogonal sequence in O~ 
is finite. Thus, Ramsey's theorem implies 

FACT 1. From any infinite sequence {co,,};=1 in g2~ an infinite subsequence can be 
extracted, with no two vectors orthogonaI. 

We will be interested in the "size" of the subsequence which can be extracted, 
especially when a further restriction is put on the sequence {co,}. In particular, we 
show that a subsequence of  positive density cannot always be extracted. 

DEFINITIONS. I. A sequence of vectors {co.} in a Hilbert space is stationary if 
<col+,,, coj+,>=(col, cot> for all i , j ,  n. 

II. A set of  integers H e N  is a Van tier Corput set if  every probability measure 
# on the circle satisfying ~ ( h ) = f e - ' t @ ( t ) = O  for every hEH satisfies #{0}=0. 

III. A set of integers H e N  is a Poincare set if for every set S c N  of  positive 
density, H intersects the difference set S - S .  (For an alternative ergodic theory 
definition see [3].) 

Kamae and Mendes France [5] proved that all Van der Corput sets are Poin- 
care sets. Recently, J. Bourgain [1] has proved that the reverse implication does not 
hold. This implies 

FACT 2. There exist a 0 < c < l  and a stationaty sequence o f  vectors {co,} in 
Oc'such that for any S E N  of  positive densiO,, co,,-L com for some m, nE S. 

PROOF Let H be a Poincare set which is not Van tier Corput. There exists a 
measure # for which ~(n)=0 VnEH and p{0}=c~ Let f2 be the Hilbert space 
L~[0,2rc). Let co,(t)=e i"t, and denote 

f~-l, t = o 
"i 

lO, t ~ 0 .  

Clearly co, Ef2c. For any sequence S e N  of  positive density, some m, nES sat- 
isfy m--nEH and hence /~(m-n)=(com, co,)=0. [] 
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Bourgain's construction is difficult; thus we note 

FACT 3. From any sequence {e),} satisfying the conclusion of  Fact 2, one can 
easily construct a Poincare set which is not Van der ColTut. 

PROOF. By the stationarity of {e),,}, the sequence {@,~, co0)} is positive definite, 
so by Herglotz's theorem [6], there exists a positive measure # on the circle, such 
that f~(n)=(co,, COo) for all n. From (o)~, v ) = c > 0  it easily follows that #{0}>0. 
(Indeed, {co,-cv} is stationary and hence there is a positive measure v so that 
~(n)=@,,-cv,  mo-cv )= f t (n ) - c  2. This implies #=v+c~5o and #{0}_->c~".) Thus 
H={n>OlfL(n)=O} is the desired Poincare set. [] 

If  we ignore the geometry and concentrate on the combinatorics of Fact 2, 
we get 

FACT 4. For some K o, the edges of  the complete graph on N can be 2-coloured 
so that 

I. there is no white Clique of  size K o, 
II. there is no black Clique of positive upper density, and 

III. the colouring is stationary: {i,j} and { i+n, j+n} are coloured identically. 

H. Furstenberg and B. Weiss [private communication] have given an elegant 
example which shows Fact 4 with /(o=3: Colour {i,j} white if for some integer 
x, i - j = x  3, black otherwise. There is no white clique of size 3, because of Fermat's 
last theorem with exponent 3; there is no black clique of positive density because 
the set {X3}~CN iS a Poincare set (see [31). [] 

2. Two Ramsey-like functions 

DEFINITION. For 0 < c < l ,  define a function A~: N ~ N  as follows: Ac(k)is  
the minimal N such that from any stationary sequence {co,,[0<=n<N} in f~,  k 
elements can be extracted, no two of which are orthogonal. F~(k)is defined similarly, 
without the stationarity constraint. 

Clearly A~ _<- F~. 

FACT 5. F~(2)=A~(2)=[c-2I§ 1. 

PROOF. Put N = N c = [ c - 2 ] + I  and d=~/-i-Z--(N-1)c 2. Let A be an orthogonal 
N by N matrix whose first column is the vector (c, c . . . . .  c, d). Let v be the N-di- 
mensional vector (1,0 . . . . .  0), and let o)0 . . . .  , c'~N-2 be the first N -  1 row vectors 
of A. Clearly ~o,,~f2~ and (~o,,co,,)=0. Thus Fc(2)>=Ac(2)>N-1. It remains 
to show that Fc(2)<_-N. Indeed, if  this is false, there are N orthogonal vectors 
{e),[0_<-n<N} in f2~. Bessels inequality []v[]2=> X I@,~@]'~=c~".N>I gives the 
desired contradiction. [] 

(N+k-2"~ 
FACT 6. F~(k)<=R(N~, k) where R(N, k)<_-[ N -  1 ) is the Ramsey number 

corresponding to N and k (see [4J). 

This is immediate fi-om Fact 5. [] 
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The upper bound above is not tight. For Ac we do not have a better upper 
bound. Regarding lower bounds we note 

PROPOSITION 1. Ac(k ) does not increase linearly with k, for some 0 < c <  1. 

PROPOSmON 2. There exist 0 < c <  1, e > l  and an increasing sequence {kl[l=>l} 
satisfying Fc(kz) >-_k~ Jor all l. 

Proposition 1 follows from Fact 2; Proposition 2 is a consequence of the fol- 
lowing result, due to Frankl and Wilson [2]: 

THEOREM. [2]. Let ~ be afamily of subsets of  {1 . . . . .  n} such that for every FE o~, 
IF] =k ,  and let q<k  be a prime power. I f  every different F,F" C ~ 7 satisfy [FA F'[ 

I __  \ 

~ k  m o d q  then [o~[<=[qn_l]... 

PROOF. Denote n = 2  z, N =  _ _  and let {Fj};=I be all subsets of {1 . . . . .  n} 

3n 
of size --if-. Define vectors {coi}~=l in R n by 

cq = n-1/2(2.1F,-1) 

where 1F is the indicator vector of F. 
Define a!so v= -n-~/= (1, 1 . . . . .  1)CR". For l<=i<=N we get 

1 
l[vH = llcojlI = 1, ( v ,  co , )  = ~ -  = c ,  

coi•162 ,Fi~Fj] = n/8 =- 3-3----8 (mod 4 } .  

n 
q = ) -  is a power of 2. Thus the tlqeorem cited above shows that any subset ~- of 

{co~ . . . . .  coN} which does not contain orthogonal vectors, satisfies 

(4 n ) I ~ 1  ~ - t " 

In other words, for k l= n/4 ' Fc(kl)> and 

(3_/ 

l ~  ~ l o g  kl  h 
> 1  

where h ( x ) = - x  log x - ( l - x ) l o g  ( l - x )  is the binary entropy function. Any z 
smaller than the entropy ratio above will do. 
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