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A NOTE ON EUCLIDEAN RAMSEY THEORY
AND A CONSTRUCTION OF BOURGAIN

N. ALON and Y. PERES (Tel Aviv)

1. Qualitative facts
Let v be a fixed unit vector in a Hilbert space Q. Denote
Q. = {0eQ|{v, 0) = ¢, |o]=1}

for a real O<c<1. Bessel’s inequality implies that any orthogonal sequence in Q,
is finite. Thus, Ramsey’s theorem implies

Fact 1. From any infinite sequence {w,}i>1 in Q, an infinite subsequence can be
extracted, with no two vectors orthogonal.

We will be interested in the “size” of the subsequence which can be extracted,
especially when a further restriction is put on the sequence {w,}. In particular, we
show that a subsequence of positive density cannot always be extracted.

DerinNITIONS. 1. A sequence of vectors {w,} in a Hilbert space is stationary if
{WB;sn> Wjyny=F{;, ;) for all i,j,n.

II. A setofintegers HCN is a Van der Corput set if every probability measure
u on the circle satisfying f(h)= f e~™du(t)=0 for every hcH satisfies p{0}=0.

ITI. A set of integers HCN'is a Poincare set if for every set SCN of positive
density, H intersects the difference set S—S. (For an alternative ergodic theory
definition see [3].)

Kamae and Mendes France [5] proved that all Van der Corput sets are Poin-
care sets. Recently, J. Bourgain [1] has proved that the reverse implication does not
hold. This implies

FACT 2. There exist a O<c=<1 and a stationary sequence of vectors {w,} in
Q. such that for any SCN of positive density, w, Lo, for some m,ncSs.

Proor Let H be a Poincare set which is not Van der Corput. There exists a
measure u for which fi(n)=0 VncH and p{0}=c?>0. Let Q be the Hilbert space

L0, 27). Let w,(¢)=¢€™, and denote
¢, =0

v = {0, £ 0.

Clearly ®,€Q.. For any sequence SN of positive density, some m, ncS sat-
isfy m—n€H and hence fi(m—n)={(w,, 0,)=0. 0O
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Bourgain’s construction is difficult; thus we note

Fact 3. From any sequence {w,} satisfying the conclusion of Fact 2, one can
easily construct a Poincare set which is not Van der Corput.

ProoF. By the stationarity of {w,)}, the sequence {{w,, wy)} is positive definite,
so by Herglotz’s theorem [6], there exists a positive measure u on the circle, such
that fi(n)=(w,, w,) for all n. From {(w,, v)=c>0 it easily follows that u{0}>0.
(Indeed, {w,—cv} is stationary and hence there is a positive measure v so that
V() ={w, —cv, wy—cv)y=fi(n)—c® This implies p=v+¢c26, and p{O0}=c2) Thus
H={n>0|fi(n)=0} is the desired Poincare set. [J

If we ignore the geometry and concentrate on the combinatorics of Fact 2,
we get

Fact 4. For some K,, the edges of the complete graph on N can be 2-coloured
so that
1. there is no white Clique of size K,
11. there is no black Cligue of positive upper density, and
1. the colouring is stationary: {i,j} and {i-+n,j+n} are coloured identically.

H. Furstenberg and B. Weiss [private communication] have given an elegant
example which shows Fact 4 with K,=3: Colour {/,j} white if for some integer
x, i—j=x3, black otherwise. There is no white clique of size 3, because of Fermat’s
last theorem with exponent 3; there is no black clique of positive density because
the set {x%},¢x i3 a Poincare set (see [3]). 0O

2. Two Ramsey-like functions

DeriNiTiON. For O=c=<1, define a function A.: N—-N as follows: A.(k) is
the minimal N such that from any stationary sequence {w,|0=n<~N} in Q. k
elements can be extracted, no two of which are orthogonal. I,(k)is defined similarly,
without the stationarity constraint.

Clearly A.=T,.

Facr 5. I,(2)=A4.(2)=]c" %+ 1.

ProoF. Put N=N_.=[c"?]+1 and d=V1—(N—1)c? Let 4 be an orthogonal
N by N matrix whose first column is the vector (¢, ¢, ..., ¢, d). Let v be the N-di-
mensional vector (1,0, ...,0), and let w,, ..., wy_, be the first N—1 row vectors
of 4. Clearly 0,62, and {(w,, @,)=0. Thus I,(2)=A,(2)>N-—1. It remains
to show that I,(2)=N. Indeed, if this is false, there are N orthogonal vectors
{0,0=n<N} in Q.. Bessels inequality [ovf?=2 (v, wp|?=c>-N>1 gives the
desired contradiction. [

Facr 6. I(k)=R(N,, k) where R(N, k)§[N;]i~i2] is the Ramsey number

corresponding to N and k (see [4]).

This is immediate from Fact 5. [
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The upper bound above is not tight. For A, we do not have a better upper
bound. Regarding lower bounds we note

ProposirioN 1. A4,(k) does not increase linearly with k, for some O<c<1.

PROPOSITION 2. There exist O<c<1, a=>1 and an increasing sequence {k|l=1}
satisfying I (k)=k} for all I

Proposition 1 follows from Fact 2; Proposition 2 is a consequence of the fol-
lowing result, due to Frankl and Wilson [2]:

THEOREM. [2]. Let & be a family of subsets of {1, ..., n} such that for every FCF,
|Fl=k, andlet q<k be a prime power. If every different F,F'¢F satisfy |FNF’|z

Zk mod g rhen p@*[g(q’il .

n
Proor. Denote n=2, N:-(3n) and let {F}I_, be all subsets of {1,...,n}

8
. 3n N n
of size < Define vectors {w;}i~; in R" by
wi = n_l/z(z . 1F-,-_ 1)
where 15 is the indicator vector of F.

Define also v=—n""2(1, 1, ..., )¢R™" For 1=i=N we get

1
”2’” = “(D]” = 19 <2/‘, wi> = Z =,
3n n
w; L w; < |[FENF] =n/8= < modz .
q=% is a power of 2. Thus the theorem cited above shows that any subset & of

{wy, ..., oy} which does not contain orthogonal vectors, satisfies

(Fl=In .
—4—~]

3
In other words, for k’:(n’/l'4) , Fc(k,)>(in_) and
3

log I (k) _ h('g‘)

o Tlogk, & h[l)
4

> 1

where A{x)=—xlog x—(1—x)log (1—x) is the binary entropy function. Any x
smaller than the entropy ratio above will do.
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